Web-based progressive geometry transmission using subdivision-surface wavelets

Jens Jessl, Martin Bertram, and Hans Hagen

TU Kaiserslautern

Overview

• Motivation
• Wavelet Construction
• Zerotree Coding
• System Architecture
• Examples

Motivation

Why Multiresolution

• view-dependent rendering
• compression
• progressive transmission
• stable efficient computation
• hierarchical design
Simplification

data

fine resolution

coarse

difference

Refinement

data

fine resolution

coarse

detail

Progressive Meshes

Subdivision Wavelets

0.1 % 1 % 10 %
Compression Schemes

- De-correlation
 - DCT
 - Wavelets
- Quantization (lossy)
- Progressive Coding
 - Arithmetic / Huffman Coding
 - Zerotrees

Overview

- Motivation
- Wavelet Construction
- Zerotree Coding
- System Architecture
- Examples

What are wavelets?

- sparse basis
 - compression
 - stable, efficient computation
- multiple levels of resolution
 - progressive transmission
 - hierarchical design
- $O(n)$ transform
Reconstruction from 10% of coefficients

Error scaled by 10

Subdivision

Subdivision
Symmetric lifting operations

1D lifting

Surface subdivision
Properties

• symmetry
• smoothness
• vanishing moments
• small compact support

• few local operations for transform
• polynomial precision fitting
Crater Lake (USGS) 1:100 Haar wavelet

1:100 bilinear B-spline unstable fitting (bi quintic)

surface parametrization (isosurface, LLNL)
Overview

- Motivation
- Wavelet Construction
- Zerotree Coding
- System Architecture
- Examples
Overview

- Motivation
- Wavelet Construction
- Zerotree Coding
- System Architecture
- Examples

Client-Server Architecture

- Server provides
 - coarse model
 - coefficient pyramid
- Client parameters
 - bits/coeff., threshold,
 - max. length of bitstream
 - max. no. polygons, max. levels

Client-Server Architecture

Client Threads

- Receiver
 - coefficient decoder
 - subdivision + expansion of detail
- Visualization
 - subdivide to target resolution
 - user interaction
Overview

- Motivation
- Wavelet Construction
- Zerotree Coding
- System Architecture
- Examples

Examples

- \(n_q = 8 \) bits per coefficient
- \(t \) : threshold / max. coeff.
- \(b_{ZT} \) : compression for zero tree coding
- \(b_{AC} \) : arithmetic + zero tree coding

<table>
<thead>
<tr>
<th>Example</th>
<th>(t)</th>
<th>(b_{ZT})</th>
<th>(b_{AC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>0%</td>
<td>95%</td>
<td>92%</td>
</tr>
<tr>
<td>T1</td>
<td>20%</td>
<td>46%</td>
<td>15%</td>
</tr>
<tr>
<td>T2</td>
<td>60%</td>
<td>9.5%</td>
<td>0.8%</td>
</tr>
<tr>
<td>T3</td>
<td>100%</td>
<td>8.7%</td>
<td>0.4%</td>
</tr>
<tr>
<td>T4</td>
<td>0%</td>
<td>71%</td>
<td>63%</td>
</tr>
<tr>
<td>T5</td>
<td>20%</td>
<td>32%</td>
<td>16%</td>
</tr>
<tr>
<td>T6</td>
<td>60%</td>
<td>9.1%</td>
<td>5.3%</td>
</tr>
<tr>
<td>T7</td>
<td>100%</td>
<td>3.7%</td>
<td>2.1%</td>
</tr>
</tbody>
</table>
Future Work

• wavelets for
 – NURBS
 – triangles (Loop subdivision)

• fix bugs