3. Neural Networks

Table of Content
1. Introduction
2. Definitions
3. Neural Network Types
4. Learning
5. Advantages & Disadvantages
6. Self-Organizing Map (SOM)

§3.1 Introduction

A neuron

A network of neurons
§3.1 Introduction

What are neural networks (NNT)?

What problem do they solve?

The system: Learn to classify objects
§3.1 Introduction

- NNT are used in:
 - Applications in function fitting
 - Pattern recognition
 - Clustering
 - Time series analysis …

- Application areas:
 - Aerospace
 - Automotive
 - Banking
 - Defence
 - Electronics
 - Entertainment
 - Financial
 - Industrial
 - Insurance
 - Manufacturing
 - Medical
 - Oil and gas
 - Speech & writing
 - Telecommunications
 - Transportation
 - Robotics
 - Securities
 - ...
§3 Neural Networks

3.2 Definitions

- Transfer functions
 - Step function: \(y = f(x) = \begin{cases} 1, & w \cdot x + b > \theta \\ 0, & w \cdot x + b < \theta \end{cases} \)
 - Linear combination: \(y = f(x) = b + \sum_{i=1}^{n} w_i \cdot x_i \)
 - Sigmoid: \(y = f(x) = \frac{1}{1 + e^{-w_0 \cdot x - w_1 \cdot b}} \)

- Without bias

- With bias
§3.2 Definitions

- Multi-Layer Neural Network

![Diagram of Multi-Layer Neural Network]

§3.3 Neural Network Types

Types of NNTs

- Single-layer Feed-Forward
- Multi-layer
- Recurrent
 - Parallel
 - Series-Parallel

§3.3 Neural Network Types

- Single-layer Feed-Forward
 - One layer
 - Information (signals) is only fed forward in the network
 - No back-propagation
§3 Neural Network Types

3.3 Neural Network Types

* Single-layer Feed-Forward

\[w = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \]
\[b = 0 \]

* Perceptron classification

* MLP (Multi Layer Perceptron)
§3.3 Neural Network Types

- Layer-Recurrent Network (LRN)

§3.4 Learning

- Learning types
 - Supervised
 - Unsupervised
 - Hybrid

§3.4 Learning

- Algorithms of supervised learning
 - Neural network (Multilayer perceptron)
 - Support Vector Machine
 - Linear regression
 - Logistic regression
 - Naïve Bayes
 - Linear discriminant analysis
 - Decision trees
 - K-nearest neighbour algorithm
§3.4 Learning

- Steps of supervised learning:
 - Determine the type of training examples
 - Gather a training set
 - Determine the input feature representation of the learned function
 - Determine the structure of the learned function and corresponding learning algorithm
 - Train the network
 - Evaluate the accuracy of the learned function

- Learning algorithms
 - Learning vector quantization (LVQ)
 - Least mean square error (LMS)
 - Perceptron learning rule
 - Back propagation network (BPN)

- Perceptron learning rule
 - Set of training examples \(\{(x_1,y_1), (x_n, y_n)\} \)
 - A learning algorithm seeks a function \(g: X \rightarrow Y \)
 - \(X \) is the input space
 - \(Y \) is the output space

\[
\begin{array}{c||c}
X: \text{Input Vector} & \\
\hline
\text{XXX} & \text{white} \\
\text{YYY} & \text{black} \\
\hline
\end{array}
\]

\(Y = \text{Target (tag, output)} \)
§3.4 Learning

- Perceptron learning rule
 - x: input vector
 - $y = f(x)$: output from the perceptron
 - b: bias term
 - $D = \{(x_1, d_1), \ldots, (x_n, d_n)\}$: training set
 - x_j: n-dimensional input vector
 - d_j: the desired output of the perceptron
 - w: weight vector
 - $w(t)$: weight at time t
 - α: learning rate

- Initialize all weights $w_i(0)$
 - E.g., to 0 or a random value
- Give a threshold γ
- For each sample j in the training set D
 - Calculate the actual output: $y_j(t) = f(w(t) \cdot x_j)$
 - Adapt the weights: $w_i(t+1) = w_i(t) + \alpha (d_j - y_j(t)) \cdot x_{ij}$
- Repeat previous step until $d_j - y_j(t) < \gamma$
 or a predetermined number of iterations has been performed

- The training set D is said to be linearly separable, if
 $\exists \gamma, \exists w \forall 1 < j < n: (w \cdot x_j + b) > \gamma$
- If the data set is linearly separable, then the algorithm converges after a finite number of steps.
- Otherwise, it will not converge.
- Therefore, normally a fixed number of steps is performed.
§3.4 Learning

- Learning and training process in NNTs

- Problems of supervised learning:
 - Trade-off between bias & variance
 - Function complexity and amount of training data
 - Dimensionality of the input space
 - Noise in the output values

- Other factors:
 - Heterogeneity of the data
 - Redundancy in the data
 - Presence of interactions and non-linearities

- Generalizations:
 - Use semi-supervised learning
 - Use active learning
 - Structured prediction
 - Learn to rank
§3.4 Learning

Training types of NNTs

- Back propagation network (BPN)
- Radial basis function network (RBF)
- Levenberg-Marquardt network (LMN)
- Hopfield network

§3.4 Learning

- Back propagation network (BPN)
 - Collect data
 - Create the network
 - Configure the network
 - Initialize the weights and biases
 - Train the network
 - Validate the network (post-training analysis)
 - Use the network

§3.4 Learning

- Back propagation network training
 - Propagation phase
 - Forward propagation of training instance of input
 - Backward propagation of output activations
 - Generates deltas between output and hidden neurons
 - Weight update phase
 - For each weight
 - Get gradient: multiply output delta and input activation
 - Subtract a ratio of the gradient from the weight
 - Repeat both phases until the performance of the network is good enough
§3.4 Learning

- Back propagation network training
 - Online learning
 - Propagation and weight update follow each other
 - Requires more updates
 - Batch learning
 - Many propagations are performed before a weight update occurs
 - Requires more memory

- Gradient computation:
 - Momentum
 - Levenberg-Marquardt
 - Conjugate Gradient
 - Variable Learning Rate
 - Steepest Descent
 - BFGS quasi-Newton
 - Powell-Beale conjugate gradient
 - Fletcher-Powell conjugate gradient
 - Polak-Ribière conjugate gradient
 - Gradient descent with adaptive learning rule
 - Gradient descent with momentum
 - One step secant
 - Resilient gradient descent

- Example
§3.4 Learning

- Limitations of back-propagation learning
 - The convergence obtained is very slow
 - The convergence is not guaranteed
 - The result may generally converge to any local minimum on the error surface, since stochastic gradient descent exists on a non-linear surface.

§3.5 Advantages and Disadvantages

- Advantages of neural networks
 - Non-linearity
 - Relation between input with output
 - Error-tolerance
 - Have been successfully used to solve many complex and diverse tasks, ranging from autonomously flying aircraft, to detecting credit card fraud

- Disadvantages
 - Initialization
 - Affects the convergence rate
 - Interpretation
 - No understanding how it works (black box)
 - Require a large diversity of training for real-world operation
 - Could be over-trained

 - Better use hybrid models combining neural networks and symbolic approaches
§3.6 Self-Organizing Maps

- Techniques for reducing the dimensions of data
 - Self Organizing Maps (SOM)
 - Also called Kohonen networks
 - [http://www.scholarpedia.org/article/Kohonen_network]
 - Principle Component Analysis (PCA)
 - Multi-Dimensional Scaling (MDS)
 - ...

A simple two-dimensional Kohonen network

Kohonen network of 4 X 4 nodes
Which is the output layer

colors are classified
§3.6 Self-Organizing Maps

- Define an ordered mapping
- Projection from a set of data items onto a regular, usually two-dimensional grid
- A model m_i is associated with each grid node
- These models are computed by the SOM algorithm
- A data item will be mapped to the node whose model is most similar to the data item
 - E.g., in terms of a distance metric
- Normally, the model is a weighted local average of the given data items in the data space
 - The model of nearby nodes are more similar than those of nodes that are further away

§3.6 Self-Organizing Maps

- Input: $x(t) = [x_1(t), ..., x_n(t)]$
 - t is the index of the data item
- Model: $m_i(t) = [m_{i1}(t), ..., m_{in}(t)]$
 - t denotes the iteration of updating m
- Update: $m_i(t+1) = m_i(t) + \alpha(t) \cdot h_{ci}(t) \cdot (x(t) - m_i(t))$
 - $\alpha(t)$: size of the correction, decreases with t
 - i: model under processing
 - c: index of the model having the smallest distance from $x(t)$
 - $h_{ci}(t)$: smoothing kernel (neighborhood function)
§3.6 Self-Organizing Maps

- $h_c(t)$: smoothing kernel (neighborhood function)
 - $k = c \rightarrow h_c(t) = 1$
 - $h_c(t)$ decreases with the increase of the distance between the models m_i and m_c
 - The spatial width of the kernel should decrease over t

- The functions of the step index (see Kohonen)
 - Determine the convergence
 - Must be chosen very delicately

- Initialization of $m_c(t)$ is a problem (see Kohonen)

§3.6 Self-Organizing Maps

- Improved algorithm
 - Batch Map
 - An order of magnitude faster
 - For every node j in the grid
 - Compute the average s_j of all input items $s(t)$ that have m_j as closest model
 - Compute the new models as: $m_i = \frac{1}{n_j} \sum_j m_j s_j(t)$
 - n_j: number of input items mapped into node j
 - The index j runs over the neighbors of node i